
Supplement on computing integral bases
Let F be an algebraic number �eld and OF ⊂ F the ring of algebraic integers in F . Recall that one

can always easily construct a Q-basis B for F that consists entirely of algebraic integers, i.e., B ⊂ OF

(how?). However, such a basis will not necessarily be an integral basis in the sense de�ned in class,
that is, a basis such that SpanZB = OF . We saw that B is an integral basis if and only if |∆(B)| is
minimal among bases that are contained in OF . We wish to write out in more detail the algorithm for
determining if a given basis is an integral basis, and for computing an integral basis if the given one
is not. To check whether or not B is an integral basis, we need to see if there are elements α ∈ OF

that are not in the Z-span of B.

Lemma 0.1 If SpanZB = {b1, b2, . . . , bn} ( OF then there is an element α ∈ OF of the form

α = (1/p)
n∑

i=1

ribi

where
(1) p is a prime such that p2|∆(B);
(2) ri ∈ {0, 1, . . . , p− 1}; and
(3) rj = 1 for some index j.

Proof.
Note �rst that if c ∈ SpanZB, then x ∈ SpanZB i� x + c ∈ SpanZB. In particular, if x /∈ SpanZB,

then x + c /∈ SpanZB. Furthermore, since B is a Q-linearly independent set, any way of writing an
element x ∈ F as a Q-linear combination of B is unique. Thus, if x =

∑
cibi for ci ∈ Q such that

some ci /∈ Z, then x /∈ SpanZB. That is, there is no other way to write it as an integral combination
of elements of B.

Now to the proof. By assumption, there is a β ∈ OF \ SpanZB. But since B is a Q-linear basis of
F , β is in the Q-span of B. So we can write

β = (1/N)
∑

cibi

for N ∈ Z, N 6= ±1, and ci ∈ Z, not all divisible by N . In fact, after dividing out all extraneous
factors, we can assume that hcf(N, c1, . . . , cn) = 1. Let p be a prime divisor of N . Then there is some
j such that p - cj . But then β′ = (N/p)β ∈ OF has the expression

β′ = (1/p)
∑

cibi

and p - cj so β′ /∈ SpanZB. Using Bezout's lemma, �nd k, l ∈ Z such that kcj + lp = 1. Then
β′′ = kβ′ + lbj ∈ OF can be written

β′′ = (1/p)
∑

sibi

with sj = 1, and hence, β′′ /∈ SpanZB. For each i, we can apply the division algorithm to write
si = mip + ri for a unique ri ∈ {0, 1, . . . , p− 1}. Note that since sj = 1, we have mj = 0 and rj = 1.
We see that

α = β′′ −
∑

mibi = (1/p)
∑

ribi

then satis�es the conditions of the lemma, except we need to check that p2 | ∆(B). We replace the
basis B by the basis of algebraic integers B′ with bj removed from B and α added instead. The change
of basis matrix is

C = (C1, C2, . . . , Cn)

where the i-th column Ci for i 6= j is the standard basis vector ei with 1 in the i-th entry and
zero elsewhere, while Cj is the vector (r1/p, r2/p, . . . , rn/p)T . So we see easily that det(C) = ±1/p.
Therefore,

∆(B′) = ∆(B)/p2.
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But we know that ∆(B′) ∈ Z. So we must have p2 | ∆(B). 2

Starting from a given basis B, we compute ∆(B). If ∆(B) is square-free, that is, for all prime
factors p of ∆(B), p2 - ∆(B), then we conclude right away that B is an integral basis. If there are
some square prime divisors, then we search for algebraic integers α of the form given in the lemma.
Of course, at this stage, we need to be good at determining if a given algebraic number is an algebraic
integer. We will discuss this point in detail in due course. In any case, if the search produces no
algebraic integers of that form, then we know that B is an integral basis, even if ∆(B) has square
factors. On the other hand, if we do �nd an α ∈ OF of the given form, then we replace the basis B
by the basis of algebraic integers B′ described in the proof with bj of B replaced by α. Then

∆(B′) = ∆(B)/p2

and |∆(B′)| will now be strictly smaller than |∆(B)|. Applying this process recursively, we will
eventually arrive at an integral basis. In the language of computer science, this is a terminating
algorithm for computing an integral basis.

Once an integral basis B has been found, it is reasonable to say that we have computed the ring
OF itself, since we can describe it precisely as the Z−linear combinations of the elements of B.
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